🔗Asymptote Gallery Tagged by “Surface” #152
🔗animations-fig001
Show animations/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Animation
Tags : #Animation | #Contour | #Surface | #Function (implicit)
import contour3; import animate; // settings.tex="pdflatex"; // settings.outformat="pdf"; size(10cm); currentprojection=orthographic(15,8,10); animation A; A.global=false; typedef real fct3(real,real,real); fct3 F(real t) { return new real(real x, real y, real z){return x^2+y^2-t*z^2+t-1;}; } int n=10; picture pic; real tmin=0.1, tmax=2; real step=(tmax-tmin)/n; draw(box((-5,-5,-5),(5,5,5))); for (int i=0; i < n; ++i) { save(); draw(surface(contour3(F(tmin+i*step),(-5,-5,-5),(5,5,5),15)),lightblue); pic.erase(); add(pic,bbox(5mm,FillDraw(lightyellow))); A.add(pic); restore(); } A.movie();
🔗animations-fig007
Show animations/fig0080.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Animation
Tags : #Graph (3D) | #Function (graphing) | #Animation | #Sphere | #Surface | #Path3 | #Segment
size(16cm); import graph3; import animation; import solids; settings.render=0; animation A; int nbpts=500; real q=2/5; real pas=5*2*pi/nbpts; int angle=3; real R=3; real x(real t){return R*cos(q*t)*cos(t);} real y(real t){return R*cos(q*t)*sin(t);} real z(real t){return R*sin(q*t);} triple[] P; real t=-pi; for (int i=0; i<nbpts; ++i) { t+=pas; P.push((x(t),y(t),z(t))); } currentprojection=orthographic((0,5,2)); currentlight=(3,3,5); pen p=rgb(0.1,0.1,0.58); transform3 t=rotate(angle,(0,0,0),(1,0.25,0.25)); filldraw(box((-R-0.5,-R-0.5),(R+0.5,R+0.5)), p, 3mm+black+miterjoin); revolution r=sphere(O,R); draw(surface(r),p); for (int phi=0; phi<360; phi+=angle) { bool[] back,front; save(); for (int i=0; i<nbpts; ++i) { P[i]=t*P[i]; bool test=dot(P[i],currentprojection.camera) > 0; front.push(test); } draw(segment(P,front,operator ..),linewidth(1mm)); draw(segment(P,!front,operator ..),grey); A.add(); restore(); } A.movie();
🔗animations-fig008
Show animations/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Animation
Tags : #Graph (3D) | #Function (graphing) | #Animation | #Sphere | #Surface | #Path3 | #Segment | #Projection (3D) | #Plane
size(16cm); import graph3; import animation; import solids; currentlight.background=black; settings.render=0; animation A; A.global=false; int nbpts=500; real q=2/5; real pas=5*2*pi/nbpts; int angle=4; real R=0.5; pen p=rgb(0.1,0.1,0.58); triple center=(1,1,1); transform3 T=rotate(angle,center,center+X+0.25*Y+0.3*Z); real x(real t){return center.x+R*cos(q*t)*cos(t);} real y(real t){return center.y+R*cos(q*t)*sin(t);} real z(real t){return center.z+R*sin(q*t);} currentprojection=orthographic(1,1,1); currentlight=(0,center.y-0.5,2*(center.z+R)); triple U=(center.x+1.1*R,0,0), V=(0,center.y+1.1*R,0); path3 xy=plane(U,V,(0,0,0)); path3 xz=rotate(90,X)*xy; path3 yz=rotate(-90,Y)*xy; triple[] P; path3 curve; real t=-pi; for (int i=0; i < nbpts; ++i) { t+=pas; triple M=(x(t),y(t),z(t)); P.push(M); curve = curve..M; } curve=curve..cycle; draw(surface(xy), grey); draw(surface(xz), grey); draw(surface(yz), grey); triple xyc=(center.x,center.y,0); path3 cle=shift(xyc)*scale3(R)*unitcircle3; surface scle=surface(cle); draw(scle, black); draw(rotate(90,X)*scle, black); draw(rotate(-90,Y)*scle, black); draw(surface(sphere(center,R)), p); triple vcam=1e5*currentprojection.camera-center; for (int phi=0; phi<360; phi+=angle) { bool[] back,front; save(); for (int i=0; i<nbpts; ++i) { P[i]=T*P[i]; bool test=dot(P[i]-center,vcam) > 0; front.push(test); } curve=T*curve; draw(segment(P,front,operator ..), paleyellow); draw(segment(P,!front,operator ..),0.5*(paleyellow+p)); draw((planeproject(xy)*curve)^^ (planeproject(xz)*curve)^^ (planeproject(yz)*curve), paleyellow); A.add(); restore(); } A.movie();
🔗graph3-fig001

A Möbius strip of half-width with midcircle of radius
and at height can be represented parametrically by :
for in and in . In this parametrization, the Möbius strip is therefore a cubic surface with equation
Source
Show graph3/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Surface | #Level set (3D)
import graph3; ngraph=200; size(12cm,0); currentprojection=orthographic(-4,-4,5); real x(real t), y(real t), z(real t); real R=2; void xyzset(real s){ x=new real(real t){return (R+s*cos(t/2))*cos(t);}; y=new real(real t){return (R+s*cos(t/2))*sin(t);}; z=new real(real t){return s*sin(t/2);}; } int n=ngraph; real w=1; real s=-w, st=2w/n; path3 p; triple[][] ts; for (int i=0; i <= n; ++i) { xyzset(s); p=graph(x,y,z,0,2pi); ts.push(new triple[] {}); for (int j=0; j <= ngraph; ++j) { ts[i].push(point(p,j)); } s += st; } pen[] pens={black, yellow, red, yellow, black}; draw(surface(ts, new bool[][]{}), lightgrey); for (int i=0; i <= 4; ++i) { xyzset(-w+i*w/2); draw(graph(x,y,z,0,2pi), 2bp+pens[i]); }
🔗graph3-fig008

Show graph3/fig0080.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Surface | #Level set (3D) | #Contour | #Function (implicit)
// Adapted from the documentation of Asymptote. import graph3; import contour; texpreamble("\usepackage{icomma}"); size3(12cm, 12cm, 8cm, IgnoreAspect); real sinc(pair z) { real r=2pi*abs(z); return r != 0 ? sin(r)/r : 1; } limits((-2, -2, -0.2), (2, 2, 1.2)); currentprojection=orthographic(1, -2, 0.5); xaxis3(rotate(90, X)*"$x$", Bounds(Min, Min), OutTicks(rotate(90, X)*Label, endlabel=false)); yaxis3("$y$", Bounds(Max, Min), InTicks(Label)); zaxis3("$z$", Bounds(Min, Min), OutTicks()); draw(lift(sinc, contour(sinc, (-2, -2), (2, 2), new real[] {0})), bp+0.8*red); draw(surface(sinc, (-2, -2), (2, 2), nx=100, Spline), lightgray); draw(scale3(2*sqrt(2))*unitdisk, paleyellow+opacity(0.25), nolight); draw(scale3(2*sqrt(2))*unitcircle3, 0.8*red);
🔗graph3-fig009

Show graph3/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Surface | #Level set (3D) | #Contour | #Function (implicit) | #Palette
size(12cm,0,false); import graph3; import contour; import palette; texpreamble("\usepackage{icomma}"); real f(pair z) {return z.x*z.y*exp(-z.x);} currentprojection=orthographic(-2.5,-5,1); draw(surface(f,(0,0),(5,10),20,Spline),palegray,bp+rgb(0.2,0.5,0.7)); scale(true); xaxis3(Label("$x$",MidPoint),OutTicks()); yaxis3(Label("$y$",MidPoint),OutTicks(Step=2)); zaxis3(Label("$z=xye^{-x}$",Relative(1),align=2E),Bounds(Min,Max),OutTicks); real[] datumz={0.5,1,1.5,2,2.5,3,3.5}; Label[] L=sequence(new Label(int i) { return YZ()*(Label(format("$z=%g$",datumz[i]), align=2currentprojection.vector()-1.5Z,Relative(1))); },datumz.length); pen fontsize=bp+fontsize(10); draw(L,lift(f,contour(f,(0,0),(5,10),datumz)), palette(datumz,Gradient(fontsize+red,fontsize+black)));
🔗graph3-fig011

Show graph3/fig0110.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Surface | #Level set (3D) | #Contour | #Function (implicit) | #Palette | #Projection (3D) | #Axis (3D) | #Label (3D) | #Shading (3D) | #Shading
import graph3; import palette; import contour; size(14cm,0); currentprojection=orthographic(-1,-1.5,0.75); currentlight=(-1,0,5); real a=1, b=1; real f(pair z) { return a*(6+sin(z.x/b)+sin(z.y/b));} real g(pair z){return f(z)-6a;} // The axes limits((0,0,4a),(14,14,8a)); xaxis3(Label("$x$",MidPoint),OutTicks()); yaxis3(Label("$y$",MidPoint),OutTicks(Step=2)); ticklabel relativelabel() { return new string(real x) {return (string)(x-6a);}; } zaxis3(Label("$z$",Relative(1),align=2E),Bounds(Min,Max),OutTicks(relativelabel())); // The surface surface s=surface(f,(0,0),(14,14),100,Spline); pen[] pens=mean(palette(s.map(zpart),Gradient(yellow,red))); // Draw the surface draw(s,pens); // Project the surface onto the XY plane. draw(planeproject(unitsquare3)*s,pens,nolight); // Draw contour for "datumz" real[] datumz={-1.5, -1, 0, 1, 1.5}; guide[][] pl=contour(g,(0,0),(14,14),datumz); for (int i=0; i < pl.length; ++i) for (int j=0; j < pl[i].length; ++j) draw(path3(pl[i][j])); // Draw the contours on the surface draw(lift(f,pl)); if(!is3D()) shipout(bbox(3mm,Fill(black)));
🔗graph3-fig012

Show graph3/fig0120.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Projection (3D) | #Shading (3D)
import graph3; import palette; real sinc(real x){return x != 0 ? sin(x)/x : 1;} real f(pair z){ real value = (sinc(pi*z.x)*sinc(pi*z.y))**2; return value^0.25; } currentprojection=orthographic(0,0,1); size(10cm,0); surface s=surface(f,(-5,-5),(5,5),100,Spline); s.colors(palette(s.map(zpart),Gradient((int)2^11 ... new pen[]{black,white}))); draw(planeproject(unitsquare3)*s,nolight);
🔗graph3-fig013

From TeXgraph exemples.
Show graph3/fig0130.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D)
settings.render=0; import graph3; import palette; size(10cm,0); currentprojection=orthographic(2,-2,2.5); real f(pair z) { real u=z.x, v=z.y; return (u/2+v)/(2+cos(u/2)*sin(v)); } surface s=surface(f,(0,0),(14,14),150,Spline); draw(s,mean(palette(s.map(zpart),Gradient(yellow,red)))); if(!is3D()) shipout(bbox(3mm,Fill(black)));
🔗graph3-fig014

From TeXgraph exemples.
Show graph3/fig0140.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D)
settings.render=0; import graph3; import palette; size(15cm,0); currentprojection=orthographic(2,-2,2.5); real f(pair z) { real u=z.x, v=z.y; return (u/2+v)/(2+cos(u/2)*sin(v)); } surface s=surface(f,(0,0),(14,14),50,Spline); s.colors(palette(s.map(zpart),Gradient(yellow,red))); draw(s); if(!is3D()) shipout(bbox(3mm,Fill(black)));
🔗graph3-fig015

Show graph3/fig0150.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D) | #Array | #Spherical harmonics
settings.render=0; import graph3; size(15cm); currentprojection=orthographic(4,2,4); real r(real Theta, real Phi){return 1+0.5*(sin(2*Theta)*sin(2*Phi))^2;} triple f(pair z) {return r(z.x,z.y)*expi(z.x,z.y);} pen[] pens(triple[] z) { return sequence(new pen(int i) { real a=abs(z[i]); return a < 1+1e-3 ? black : interp(blue, red, 2*(a-1)); },z.length); } surface s=surface(f,(0,0),(pi,2pi),100,Spline); // Interpolate the corners, and coloring each patch with one color // produce some artefacts draw(s,pens(s.cornermean())); if(!is3D()) shipout(bbox(3mm,Fill(black)));
🔗graph3-fig016

Show graph3/fig0160.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D) | #Array | #Spherical harmonics
settings.render=0; import graph3; size(15cm); currentprojection=orthographic(4,2,4); real r(real Theta, real Phi){return 1+0.5*(sin(2*Theta)*sin(2*Phi))^2;} triple f(pair z) {return r(z.x,z.y)*expi(z.x,z.y);} pen[][] pens(triple[][] z) { pen[][] p=new pen[z.length][]; for(int i=0; i < z.length; ++i) { triple[] zi=z[i]; p[i]=sequence(new pen(int j) { real a=abs(zi[j]); return a < 1+1e-3 ? black : interp(blue, red, 2*(a-1));}, zi.length); } return p; } surface s=surface(f,(0,0),(pi,2pi),100,Spline); // Here we interpolate the pens, this looks smoother, with fewer artifacts draw(s,mean(pens(s.corners()))); if(!is3D()) shipout(bbox(3mm,Fill(black)));
🔗graph3-fig017

Show graph3/fig0170.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D) | #Array | #Spherical harmonics
import graph3; size(16cm, 0); currentprojection=orthographic(4, 2, 4); real r(real Theta, real Phi){return 1+0.5*(sin(2*Theta)*sin(2*Phi))^2;} triple f(pair z) {return r(z.x, z.y)*expi(z.x, z.y);} pen[][] pens(triple[][] z) { pen[][] p=new pen[z.length][]; for(int i=0; i < z.length; ++i) { triple[] zi=z[i]; p[i]=sequence(new pen(int j) { real a=abs(zi[j]); return a < 1+1e-3 ? black : interp(blue, red, 2*(a-1));}, zi.length); } return p; } surface s=surface(f, (0, 0), (pi, 2pi), 100, Spline); // Here we determine the colors of vertexes (vertex shading). // Since the PRC output format does not support vertex shading of Bezier surfaces, PRC patches // are shaded with the mean of the four vertex colors. s.colors(pens(s.corners())); draw(s); if(!is3D()) shipout(bbox(1mm, Fill(black)));
🔗graph3-fig018

The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.
The spherical harmonics are defined by:
where and is the Legendre polynomial.
Source
Show graph3/fig0180.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Palette | #Surface | #Shading (3D) | #Spherical harmonics
import palette; import math; import graph3; typedef real fct(real); typedef pair zfct2(real,real); typedef real fct2(real,real); real binomial(real n, real k) { return gamma(n+1)/(gamma(n-k+1)*gamma(k+1)); } real factorial(real n) { return gamma(n+1); } real[] pdiff(real[] p) { // p(x)=p[0]+p[1]x+...p[n]x^n // retourne la dérivée de p real[] dif; for (int i : p.keys) { if(i != 0) dif.push(i*p[i]); } return dif; } real[] pdiff(real[] p, int n) { // p(x)=p[0]+p[1]x+...p[n]x^n // dérivée n-ième de p real[] dif={0}; if(n >= p.length) return dif; dif=p; for (int i=0; i < n; ++i) dif=pdiff(dif); return dif; } fct operator *(real y, fct f) { return new real(real x){return y*f(x);}; } zfct2 operator +(zfct2 f, zfct2 g) {// Défini f+g return new pair(real t, real p){return f(t,p)+g(t,p);}; } zfct2 operator -(zfct2 f, zfct2 g) {// Défini f-g return new pair(real t, real p){return f(t,p)-g(t,p);}; } zfct2 operator /(zfct2 f, real x) {// Défini f/x return new pair(real t, real p){return f(t,p)/x;}; } zfct2 operator *(real x,zfct2 f) {// Défini x*f return new pair(real t, real p){return x*f(t,p);}; } fct fct(real[] p) { // convertit le tableau des coefs du poly p en fonction polynôme return new real(real x){ real y=0; for (int i : p.keys) { y += p[i]*x^i; } return y; }; } real C(int l, int m) { if(m < 0) return 1/C(l,-m); real OC=1; int d=l-m, s=l+m; for (int i=d+1; i <=s ; ++i) OC *= i; return 1/OC; } int csphase=-1; fct P(int l, int m) { // Polynôme de Legendre associé // http://mathworld.wolfram.com/LegendrePolynomial.html if(m < 0) return (-1)^(-m)*C(l,-m)*P(l,-m); real[] xl2; for (int k=0; k <= l; ++k) { xl2.push((-1)^(l-k)*binomial(l,k)); if(k != l) xl2.push(0); } fct dxl2=fct(pdiff(xl2,l+m)); return new real(real x){ return (csphase)^m/(2^l*factorial(l))*(1-x^2)^(m/2)*dxl2(x); }; } zfct2 Y(int l, int m) {// http://fr.wikipedia.org/wiki/Harmonique_sph%C3%A9rique#Expression_des_harmoniques_sph.C3.A9riques_normalis.C3.A9es return new pair(real theta, real phi) { return sqrt((2*l+1)*C(l,m)/(4*pi))*P(l,m)(cos(theta))*expi(m*phi); }; } real xyabs(triple z){return abs(xypart(z));} size(16cm); currentprojection=orthographic(0,1,1); zfct2 Ylm; triple F(pair z) { // real r=0.75+dot(0.25*I,Ylm(z.x,z.y)); // return r*expi(z.x,z.y); real r=abs(Ylm(z.x,z.y))^2; return r*expi(z.x,z.y); } int nb=4; for (int l=0; l < nb; ++l) { for (int m=0; m <= l; ++m) { Ylm=Y(l,m); surface s=surface(F,(0,0),(pi,2pi),60); s.colors(palette(s.map(xyabs),Rainbow())); triple v=(-m,0,-l); draw(shift(v)*s); label("$Y_"+ string(l) + "^" + string(m) + "$:",shift(X/3)*v); } }
🔗solids-fig001

Show solids/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Light (3D) | #Draw (3D) | #Surface | #Sphere | #Revolution | #Projection (3D)
import solids; import three; currentprojection=orthographic(1,2,2); size(6cm,0); material m = material( diffusepen=yellow, emissivepen=black, specularpen=orange, shininess=0.25, metallic=0.5, fresnel0=0.07 ); draw(surface(sphere(1)), m);
🔗solids-fig002

Show solids/fig0020.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Light (3D) | #Draw (3D) | #Surface | #Sphere | #Revolution | #Projection (3D)
import solids; currentlight=light(paleyellow, specularfactor=3, (2,4,6)); size(6cm,0); draw(sphere(1,n=4*nslice), linewidth(bp), m=10); draw(surface(sphere(1,n=4*nslice)), orange);
🔗solids-fig003

Show solids/fig0030.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Revolution | #Projection (3D) | #Draw (3D) | #Surface | #Sphere | #Wire frame | #Line type
// Author: John Bowman. size(6cm, 0); import solids; currentprojection=orthographic(0, 10, 5); nslice=4*nslice; revolution r=sphere(O, 1); draw(surface(r), lightgrey+opacity(0.75)); skeleton s; r.transverse(s, reltime(r.g, 0.6), currentprojection); r.transverse(s, reltime(r.g, 0.5), currentprojection); draw(s.transverse.back, linetype("8 8", 8)); draw(s.transverse.front); r.longitudinal(s, currentprojection); draw(s.longitudinal.front); draw(s.longitudinal.back, linetype("8 8", 8));
🔗solids-fig004

Show solids/fig0040.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Transform (3D) | #Revolution | #Surface | #Sphere | #Projection (3D)
import solids; size(6cm,0); currentprojection=orthographic(100,150,30); real r=1; skeleton s; revolution sph=sphere(O,r); draw(surface(sph), palegray); path3 cle=rotate(90,X)*scale3(r)*unitcircle3; triple cam=unit(currentprojection.camera); real a=degrees(xypart(cam),false)-90; real b=-sgn(cam.z)*aCos(sqrt(cam.x^2+cam.y^2)/abs(cam)); cle=rotate(b,cross(Z,cam))*rotate(a,Z)*cle; draw(cle,4pt+red);
🔗solids-fig005

Show solids/fig0050.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Projection (3D) | #Solid | #Transform (3D) | #Revolution | #Surface | #Sphere | #Light (3D)
import solids; size(6cm,0); currentlight=light(diffuse=yellow, specular=blue, specularfactor=5, (5,-5,10)); // currentprojection=orthographic(100,100,30); real r=2; skeleton s; revolution sph=sphere(O,r); draw(surface(sph),red); triple cam=unit(currentprojection.camera); revolution cle=revolution(O,r*(rotate(90,Z)*cam),cam); draw(cle, 8pt+black);
🔗solids-fig007

Show solids/fig0070.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Surface | #Sphere | #Draw (3D)
import solids; size(6cm,0); currentprojection=orthographic(1,2,2); surface s=surface(sphere(1,n=10)); material m = material( diffusepen = 0.8*red, emissivepen= yellow, specularpen= red ); material[] p={m, red, 0.8*(red+blue) , green, 0.8*blue}; p.cyclic=true; draw(s,p);
🔗solids-fig008

Show solids/fig0080.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Plane | #Shading (3D) | #Transform (3D) | #Projection (3D) | #Surface | #Palette
import solids; import palette; size(14cm,0); currentlight=light( gray(0.4), specularfactor=3, (-0.5,-0.25,0.45), (0.5,-0.5,0.5),(0.5,0.5,0.75) ); nslice=4*nslice; surface s=surface(sphere(O,1)); draw(s,lightgrey); path3 pl=plane((1,0,0),(0,1,0),(0,0,-1)); surface pls=shift(3,3,-1e-3)*scale(-6,-6,1)*surface(pl); draw(pls,0.7*red); real dist(triple z){return abs(z-Z);} surface shade; for (int i=0; i < currentlight.position.length; ++i) { shade=planeproject(pl,currentlight.position[i])*s; draw(shade,mean(palette((shade.map(dist)), Gradient(black,gray(0.6)))), nolight); }
🔗solids-fig009

Show solids/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Arc (3D) | #Markers | #Revolution | #Surface | #Sphere
size(8cm, 0); import solids; import graph3; //Draw 3D right angle (MA, MB) void drawrightangle(picture pic=currentpicture, triple M, triple A, triple B, real radius=0, pen p=currentpen, pen fillpen=nullpen, projection P=currentprojection) { p=linejoin(0)+linecap(0)+p; if (radius==0) radius=arrowfactor*sqrt(2); transform3 T=shift(-M); triple OA=radius/sqrt(2)*unit(T*A), OB=radius/sqrt(2)*unit(T*B), OC=OA+OB; path3 tp=OA--OC--OB; picture tpic; draw(tpic, tp, p=p); if (fillpen!=nullpen) draw(tpic, surface(O--tp--cycle), fillpen); add(pic, tpic, M); } currentprojection=orthographic(10, 15, 3); real r=10, h=6; // r=sphere radius; h=altitude section triple Op=(0, 0, h); limits((0, 0, 0), 1.1*(r, r, r)); axes3("x", "y", "z"); real rs=sqrt(r^2-h^2); // section radius real ch=180*acos(h/r)/pi; path3 arcD=Arc(O, r, 180, 0, ch, 0, Y, 50); revolution sphereD=revolution(O, arcD, Z); draw(surface(sphereD), opacity(0.5)+lightblue); draw(shift(0, 0, h)*scale3(rs)*surface(unitcircle3), opacity(0.5)); path3 arcU=Arc(O, r, ch, 0, 0, 0, Y, 10); revolution sphereU=revolution(O, arcU, Z); draw(surface(sphereU), opacity(0.33)+lightgrey); // right triangle OO'A triple A=rotate(100, Z)*(rs, 0, h); dot("$O$", O, NW); dot("$O'$", Op, W); dot("$A$", A, N); draw(A--O--Op--A); drawrightangle(Op, O, A); if(!is3D()) shipout(format="pdf", bbox(Fill(paleyellow)));
🔗solids-fig010

Show solids/fig0100.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Revolution | #Wire frame | #Surface
unitsize(1cm); import solids; currentprojection=orthographic(0, 100, 25); real r=4, h=7; triple O=(0, 0, 0); triple Oprime=(0, 0, 3); triple pS=(0, 0, h); triple pA=(r*sqrt(2)/2, r*sqrt(2)/2, 0); revolution rC=cone(O, r, h, axis=Z, n=1); draw(surface(rC), blue+opacity(0.5)); skeleton s; real tOprime=abs(Oprime)/h; rC.transverse(s, reltime(rC.g, tOprime), currentprojection); triple pAprime=relpoint(pA--pS, tOprime); draw(s.transverse.back, dashed); draw(s.transverse.front); label("$S$", pS, N); dot(Label("$O$", align=SE), O); dot(Label("$O'$", align=SE), Oprime); dot(Label("$A$", align=Z), pA); dot(Label("$A'$", align=Z), pAprime); draw(pS--O^^O--pA^^Oprime--pAprime, dashed);
🔗solids-fig014

Author : Jens Schwaiger.
With its pleasant authorization.
Show solids/fig0140.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Polyhedron | #Surface
size(10cm,0); import bsp; currentprojection=perspective(10,3,-2); guide achteck=polygon(8); real lge=length(point(achteck,1)-point(achteck,0)); int n=8; face[] faces; guide3[] sq; guide3[] tr; triple a,b,c,d; a=(point(achteck,0).x,point(achteck,0).y,-lge/2); b=(point(achteck,1).x,point(achteck,1).y,-lge/2); c=(point(achteck,1).x,point(achteck,1).y,lge/2); d=(point(achteck,0).x,point(achteck,0).y,lge/2); sq[0]=a--b--c--d--cycle; for(int i=1;i<n;i=i+1) sq[i]=rotate(45*i,Z)*sq[0]; for(int i=0;i<3;i=i+1) sq[n+i]=rotate(90,Y)*sq[i]; for(int i=4;i<7;i=i+1) sq[n-1+i]=rotate(90,Y)*sq[i]; for(int i=2;i<3;i=i+1) sq[12+i]=rotate(90,X)*sq[i]; sq[14]=rotate(90,X)*sq[2]; sq[15]=rotate(90,X)*sq[4]; sq[16]=rotate(90,X)*sq[6]; sq[17]=rotate(90,X)*sq[0]; tr[0]=point(sq[2],3)--point(sq[2],2)--point(sq[14],1)--cycle; for(int i=1;i<4;i=i+1) tr[i]=rotate(90*i,Z)*tr[0]; tr[4]=reverse(point(sq[2],0)--point(sq[2],1)--point(sq[9],2)--cycle); for(int i=5;i<8;i=i+1) tr[i]=rotate(90*(i-4),Z)*tr[4]; real hgtsq=3; triple[][][] pyrsq=new triple[18][4][3]; path3[] pyrsqfc=new path3[4*18]; int nofface=0; for(int i=0;i<18;i=i+1){ triple cog=0.5(point(sq[i],0)+point(sq[i],2)); triple sp=cog+ hgtsq*unit(cross(point(sq[i],1)-point(sq[i],0),point(sq[i],3)-point(sq[i],0))); for(int j=0;j<3;j=j+1){ pyrsq[i][j][0]=point(sq[i],j); pyrsq[i][j][1]=point(sq[i],j+1); pyrsq[i][j][2]=sp; pyrsqfc[nofface]=pyrsq[i][j][0]--pyrsq[i][j][1]--pyrsq[i][j][2]--cycle; nofface=nofface+1; } pyrsq[i][3][0]=point(sq[i],3); pyrsq[i][3][1]=point(sq[i],0); pyrsq[i][3][2]=sp; pyrsqfc[nofface]=pyrsq[i][3][0]--pyrsq[i][3][1]--pyrsq[i][3][2]--cycle; nofface=nofface+1; } for(int i=0;i<18*4;i=i+1) faces.push(pyrsqfc[i]); for(int i=0;i<18*4;i=i+1) filldraw(faces[i],project(pyrsqfc[i]),yellow,black+2.5bp); path3[] pyrtrfc=new path3[3*8]; real hgttr=2; int nuoftr=0; for(int i=0;i<8;i=i+1){ triple cog=(1/3)*(point(tr[i],0)+point(tr[i],1)+point(tr[i],2)); triple sp=cog+hgttr*unit(cross(point(tr[i],1)-point(tr[i],0),point(tr[i],2)-point(tr[i],0))); pyrtrfc[nuoftr]=point(tr[i],0)--point(tr[i],1)--sp--cycle; pyrtrfc[nuoftr+1]=point(tr[i],1)--point(tr[i],2)--sp--cycle; pyrtrfc[nuoftr+2]=point(tr[i],2)--point(tr[i],0)--sp--cycle; nuoftr=nuoftr+3; } for(int j=0;j<24;j=j+1) faces.push(pyrtrfc[j]); for(int j=0;j<24;j=j+1) filldraw(faces[4*18+j],project(pyrtrfc[j]),orange+yellow,black+2bp); add(faces); shipout(defaultfilename,bbox(0.2cm,black,RadialShade(paleblue,darkblue)));
🔗solids-fig015

Author : Jens Schwaiger.
With its pleasant authorization.
Show solids/fig0150.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Polyhedron | #Surface
// PRC/OpenGL version size(10cm,0); import graph3; currentprojection=orthographic(10,3,-2); // currentlight=nolight; guide achteck=polygon(8); real lge=length(point(achteck,1)-point(achteck,0)); int n=8; guide3[] sq; guide3[] tr; triple a,b,c,d; a=(point(achteck,0).x,point(achteck,0).y,-lge/2); b=(point(achteck,1).x,point(achteck,1).y,-lge/2); c=(point(achteck,1).x,point(achteck,1).y,lge/2); d=(point(achteck,0).x,point(achteck,0).y,lge/2); sq[0]=a--b--c--d--cycle; for(int i=1;i<n;i=i+1) sq[i]=rotate(45*i,Z)*sq[0]; for(int i=0;i<3;i=i+1) sq[n+i]=rotate(90,Y)*sq[i]; for(int i=4;i<7;i=i+1) sq[n-1+i]=rotate(90,Y)*sq[i]; for(int i=2;i<3;i=i+1) sq[12+i]=rotate(90,X)*sq[i]; sq[14]=rotate(90,X)*sq[2]; sq[15]=rotate(90,X)*sq[4]; sq[16]=rotate(90,X)*sq[6]; sq[17]=rotate(90,X)*sq[0]; tr[0]=point(sq[2],3)--point(sq[2],2)--point(sq[14],1)--cycle; for(int i=1;i<4;i=i+1) tr[i]=rotate(90*i,Z)*tr[0]; tr[4]=reverse(point(sq[2],0)--point(sq[2],1)--point(sq[9],2)--cycle); for(int i=5;i<8;i=i+1) tr[i]=rotate(90*(i-4),Z)*tr[4]; real hgtsq=3; triple[][][] pyrsq=new triple[18][4][3]; path3[] pyrsqfc=new path3[4*18]; int nofface=0; for(int i=0;i<18;i=i+1){ triple cog=0.5(point(sq[i],0)+point(sq[i],2)); triple sp=cog+ hgtsq*unit(cross(point(sq[i],1)-point(sq[i],0),point(sq[i],3)-point(sq[i],0))); for(int j=0;j<3;j=j+1){ pyrsq[i][j][0]=point(sq[i],j); pyrsq[i][j][1]=point(sq[i],j+1); pyrsq[i][j][2]=sp; pyrsqfc[nofface]=pyrsq[i][j][0]--pyrsq[i][j][1]--pyrsq[i][j][2]--cycle; nofface=nofface+1; } pyrsq[i][3][0]=point(sq[i],3); pyrsq[i][3][1]=point(sq[i],0); pyrsq[i][3][2]=sp; pyrsqfc[nofface]=pyrsq[i][3][0]--pyrsq[i][3][1]--pyrsq[i][3][2]--cycle; nofface=nofface+1; } for(int i=0;i<18*4;i=i+1) draw(surface(pyrsqfc[i]),yellow,black+2.5bp); path3[] pyrtrfc=new path3[3*8]; real hgttr=2; int nuoftr=0; for(int i=0;i<8;i=i+1){ triple cog=(1/3)*(point(tr[i],0)+point(tr[i],1)+point(tr[i],2)); triple sp=cog+hgttr*unit(cross(point(tr[i],1)-point(tr[i],0),point(tr[i],2)-point(tr[i],0))); pyrtrfc[nuoftr]=point(tr[i],0)--point(tr[i],1)--sp--cycle; pyrtrfc[nuoftr+1]=point(tr[i],1)--point(tr[i],2)--sp--cycle; pyrtrfc[nuoftr+2]=point(tr[i],2)--point(tr[i],0)--sp--cycle; nuoftr=nuoftr+3; } for(int j=0;j<24;j=j+1) draw(surface(pyrtrfc[j]),orange+yellow,black+2bp);
🔗three-fig001

Show three/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Three.asy
Tags : #Direction (3D) | #Patch | #Path3 | #Surface | #Triple
import three; size(12cm); currentprojection=orthographic(1,1,1.5); currentlight=(1,0,1); triple P00=-X-Y+0.5*Z, P03=-X+Y, P33=X+Y, P30=X-Y; triple[][] P={ {P00,P00+(-0.5,0.5,-1),P03+(0,-0.5,1),P03}, {P00+(0.5,-0.5,-1),(-0.5,-0.5,0.5),(-0.5,0.5,-1.5),P03+(0.5,0,1)}, {P30+(-0.5,0,1),(0.5,-0.5,-1.5),(0.5,0.5,1),P33+(-0.5,0,1)}, {P30,P30+(0,0.5,1),P33+(0,-0.5,1),P33} }; surface s=surface(patch(P)); draw(s,15,15,yellow,meshpen=grey); draw(sequence(new path3(int i){ return s.s[i].external();},s.s.length), bp+red); dot("P[0][0]",P[0][0], align=N, black); dot("P[0][3]",P[0][3], black); dot("P[3][3]",P[3][3], align=S, black); dot("P[3][0]",P[3][0], align=W, black); draw(Label("P[0][1]",align=SW,EndPoint),P[0][0]--P[0][1], Arrow3); draw(Label("P[1][0]",align=SE,EndPoint),P[0][0]--P[1][0], Arrow3); draw(Label("P[0][2]",align=E,EndPoint),P[0][3]--P[0][2], Arrow3); draw(Label("P[1][3]",EndPoint),P[0][3]--P[1][3], Arrow3); draw(Label("P[2][3]",EndPoint),P[3][3]--P[2][3], Arrow3); draw(Label("P[3][2]",EndPoint),P[3][3]--P[3][2], Arrow3); draw(Label("P[3][1]",EndPoint),P[3][0]--P[3][1], Arrow3); draw(Label("P[2][0]", align=W,EndPoint),P[3][0]--P[2][0], Arrow3); dot("P[1][1]",P[1][1], align=S); dot("P[1][2]",P[1][2], align=E); dot("P[2][2]",P[2][2], align=N); dot("P[2][1]",P[2][1], align=W); for (int i=0; i < s.s.length; ++i) dot(s.s[i].internal(), bp+red); if(!is3D()) shipout(bbox(Fill(lightgrey)));
🔗three-fig002

Show three/fig0020.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Three.asy
Tags : #Shading (3D) | #Palette | #Patch | #Path3 | #Surface | #Triple
import three; import palette; size(12cm); currentprojection=orthographic(1,1,1.5); currentlight=(1,0,1); triple P00=-X-Y+0.5*Z, P03=-X+Y, P33=X+Y, P30=X-Y; triple[][] P={ {P00,P00+(-0.5,0.5,-1),P03+(0,-0.5,1),P03}, {P00+(0.5,-0.5,-1),(-0.5,-0.5,0.5),(-0.5,0.5,-1.5),P03+(0.5,0,1)}, {P30+(-0.5,0,1),(0.5,-0.5,-1.5),(0.5,0.5,1),P33+(-0.5,0,1)}, {P30,P30+(0,0.5,1),P33+(0,-0.5,1),P33} }; surface s=surface(patch(P)); s.colors(palette(s.map(zpart),Gradient(yellow,red))); // s.colors(palette(s.map(zpart),Rainbow())); draw(s); draw(sequence(new path3(int i){ return s.s[i].external();},s.s.length), bp+orange); if(!is3D()) shipout(bbox(Fill(lightgrey)));
🔗three-fig003

Show three/fig0030.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Three.asy
Tags : #Shading (3D) | #Palette | #Patch | #Path3 | #Surface | #Triple
import three; size(10cm); currentlight=(0,0,1); surface sf=surface(patch(P=new triple[][] { {(0,0,0),(1,0,0),(1,0,0),(2,0,0)}, {(0,1,0),(1,0,1),(1,0,1),(2,1,0)}, {(0,1,0),(1,0,-1),(1,0,-1),(2,1,0)}, {(0,2,0),(1,2,0),(1,2,0),(2,2,0)} })); draw(sf,surfacepen=yellow); draw(sf.s[0].vequals(0.5),squarecap+2bp+blue,currentlight); draw(sf.s[0].uequals(0.5),squarecap+2bp+red,currentlight);