🔗Asymptote Gallery Tagged by “Arc (3D)” #177
đź”—solids-fig009

Show solids/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Solids.asy
Tags : #Solid | #Arc (3D) | #Markers | #Revolution | #Surface | #Sphere
size(8cm, 0); import solids; import graph3; //Draw 3D right angle (MA, MB) void drawrightangle(picture pic=currentpicture, triple M, triple A, triple B, real radius=0, pen p=currentpen, pen fillpen=nullpen, projection P=currentprojection) { p=linejoin(0)+linecap(0)+p; if (radius==0) radius=arrowfactor*sqrt(2); transform3 T=shift(-M); triple OA=radius/sqrt(2)*unit(T*A), OB=radius/sqrt(2)*unit(T*B), OC=OA+OB; path3 tp=OA--OC--OB; picture tpic; draw(tpic, tp, p=p); if (fillpen!=nullpen) draw(tpic, surface(O--tp--cycle), fillpen); add(pic, tpic, M); } currentprojection=orthographic(10, 15, 3); real r=10, h=6; // r=sphere radius; h=altitude section triple Op=(0, 0, h); limits((0, 0, 0), 1.1*(r, r, r)); axes3("x", "y", "z"); real rs=sqrt(r^2-h^2); // section radius real ch=180*acos(h/r)/pi; path3 arcD=Arc(O, r, 180, 0, ch, 0, Y, 50); revolution sphereD=revolution(O, arcD, Z); draw(surface(sphereD), opacity(0.5)+lightblue); draw(shift(0, 0, h)*scale3(rs)*surface(unitcircle3), opacity(0.5)); path3 arcU=Arc(O, r, ch, 0, 0, 0, Y, 10); revolution sphereU=revolution(O, arcU, Z); draw(surface(sphereU), opacity(0.33)+lightgrey); // right triangle OO'A triple A=rotate(100, Z)*(rs, 0, h); dot("$O$", O, NW); dot("$O'$", Op, W); dot("$A$", A, N); draw(A--O--Op--A); drawrightangle(Op, O, A); if(!is3D()) shipout(format="pdf", bbox(Fill(paleyellow)));
đź”—three-fig004

Show three/fig0040.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Three.asy
Tags : #Arrow (3D) | #Triple | #Arc (3D) | #Direction (3D) | #Plan
import three; size(8cm, 0); real radius=1, theta=37, phi=60; currentprojection=perspective(4, 1, 2); // Planes pen bg=gray(0.9)+opacity(0.5); draw(surface((1.2, 0, 0)--(1.2, 0, 1.2)--(0, 0, 1.2)--(0, 0, 0)--cycle), bg, bg); draw(surface((0, 1.2, 0)--(0, 1.2, 1.2)--(0, 0, 1.2)--(0, 0, 0)--cycle), bg, bg); draw(surface((1.2, 0, 0)--(1.2, 1.2, 0)--(0, 1.2, 0)--(0, 0, 0)--cycle), bg, bg); real r=1.5; draw(Label("$x$", 1), O--r*X, Arrow3(HookHead3)); draw(Label("$y$", 1), O--r*Y, Arrow3(HookHead3)); draw(Label("$z$", 1), O--r*Z, Arrow3(HookHead3)); label("$\rm O$", (0, 0, 0), W); triple pQ=radius*dir(theta, phi); // Point Q // triple pQ=radius*expi(radians(theta), radians(phi)); // Point Q draw(O--radius*dir(90, phi)^^O--pQ, dashed); dot("$R*\mathrm{dir}\left(\theta, \phi\right)$", pQ); // Arcs draw("$\theta$", reverse(arc(O, 0.5*pQ, 0.5*Z)), N+0.3E, Arrow3(HookHead2)); draw("$\phi$", arc(O, 0.5*X, 0.5*(pQ.x, pQ.y, 0)), N+0.3E, Arrow3(HookHead2)); path3 p3=O--arc(O, radius, 0, phi, 90, phi)--cycle; draw(surface(p3), blue+opacity(0.5));