PIPRIME.FR BLOG

Live fully to honor life

Tag Picture -- Asymptote Gallery

đź”—fractales-fig001

Figure fractales 001 Generated with Asymptote

Show fractales/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Function (creating) | #Fractals | #Recursion | #Transform | #Picture

// From documentation of Asymptote
size(250);

real a=3;
real b=4;
real c=hypot(a,b);

transform ta=shift(c,c)*rotate(-aCos(a/c))*scale(a/c)*shift(-c);
transform tb=shift(0,c)*rotate(aCos(b/c))*scale(b/c);

picture Pythagorean(int n) {
  picture pic;
  fill(pic,scale(c)*unitsquare,1/(n+1)*green+n/(n+1)*brown);
  if(n == 0) return pic;
  picture branch=Pythagorean(--n);
  add(pic,ta*branch);
  add(pic,tb*branch);
  return pic;
}

add(Pythagorean(12));

đź”—fractales-fig003

Figure fractales 003 Generated with Asymptote

Show fractales/fig0030.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Function (creating)

// Barnsley's fern
// Fougère de Barnsley

size(5cm,0);

real ab=85, ac=-5;
real rc=.85, rb=-.31;
path trk=(0,0)--(0,1);

transform ta=shift(0,1)*rotate(ab)*scale(rb);
transform tb=shift(0,1)*rotate(-ab)*scale(rb);
transform tc=shift(0,1)*rotate(ac)*scale(rc);

picture fern(int n) {
  picture opic;
  draw(opic,trk^^ta*trk^^tb*trk^^tc*trk);
  if (n==0) return opic;
  picture branch=fern(n-1);
  add(opic,branch);
  add(opic,ta*branch);
  add(opic,tb*branch);
  add(opic,tc*branch);
  return opic;
}

add(fern(6));

đź”—fractales-fig004

Figure fractales 004 Generated with Asymptote

Show fractales/fig0040.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Transform | #Picture

// Barnsley's fern
// Fougère de Barnsley
size(10cm,0);

real ab=72, ac=-7;
real rc=0.85, rb=0.35;
path trk=(0,0)--(0,1);

transform ta=shift(0,1)*rotate(ab)*scale(rb);
transform tb=shift(0,1)*rotate(-ab)*scale(rb);
transform tc=shift(0,1)*rotate(ac)*scale(rc);
transform td=shift(0,1)*rotate((ab+ac)/2)*scale(rb);
transform te=shift(0,1)*rotate(-(ab+ac)/2)*scale(rb);

picture pic;
draw(pic,trk,red+.8green);

//Construct a fern branch as atractor
int nbit=7;
for(int i=1; i<=nbit; ++i) {
  picture pict;
  add(pict,ta*pic);
  add(pict,tb*pic);
  add(pict,tc*pic);
  draw(pict,(0,0)--(0,1), (2*(i/nbit)^2)*bp+((1-i/nbit)*green+i/nbit*brown));
  pic=pict;
}

//Use the fern branch to construct... a fern branch
picture pict;
add(pict,ta*pic);
add(pict,tb*pic);

pair x=(0,1);
nbit=23;
for(int i=1; i<=nbit; ++i) {
  add(shift(x)*rotate(ac*i)*scale(rc^i)*pict);
  draw(tc^i*((0,0)--(0,1)), 2*(1.5-i/nbit)^2*bp+brown);
  x=tc*x;
}

shipout(bbox(3mm, 2mm+black, FillDraw(paleyellow)));

đź”—fractales-fig005

Figure fractales 005 Generated with Asymptote

Show fractales/fig0050.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Transform | #Picture

// Barnsley's fern
// Fougère de Barnsley
size(5cm,0);

real ab=85, ac=-5;
real rc=0.8, rb=0.3;
path trk=(0,0)--(0,1);

transform [] t;
t[1] =shift(0,1)*rotate(ab)*scale(rb);
t[2] =shift(0,1)*rotate(-ab)*scale(rb);
t[3] =shift(0,1)*rotate(ac)*scale(rc);
real sum=0;

for(int i=0; i<100; ++i) sum+=(rc*cos(ac*pi/180))^i;
t[4] =xscale(0.01)*yscale(1/sum);

picture pic;
draw(pic,trk);
pair pt=(0,0);

for(int i=0; i < 1000; ++i) {
  pt=t[ 1+floor((3.0*rand()/randMax)) ]*pt;
}

int nbt;
for(int i=0; i < 200000; ++i) {
  nbt=1+floor((4.0*rand()/randMax));
  pt=t[nbt]*pt;
  draw(pt);
}

đź”—fractales-fig008

Figure fractales 008 Generated with Asymptote

Show fractales/fig0080.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Loop/for/while | #Picture

size(10cm,0);

real mandelbrot(pair c, real r, int count=100) {
  int i=0;
  pair z=c;
  do {
    ++i;
    z=z^2+c;
  } while (length(z) <= r && i<count);

  return (i<count) ? i/count : 0;
}

real r=4;
real step=.01;
real xmin=-2.25, xmax=.75;
real ymin=-1.3, ymax=0;

real x=xmin, y=ymin;
int xloop=round((xmax-xmin)/step);
int yloop=round((ymax-ymin)/step);
pen p;
path sq=scale(step)*unitsquare;

for(int i=0; i < xloop; ++i) {
  for(int j=0; j < yloop; ++j) {
    p=mandelbrot((x,y),r,20)*red;
    filldraw(shift(x,y)*sq,p,p);
    y += step;
  }
  x += step;
  y=ymin;
}

add(reflect((0,0),(1,0))*currentpicture);

đź”—fractales-fig009

Figure fractales 009 Generated with Asymptote

Show fractales/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Array

size(10cm,0);

real a=-1.5, b=2a/3;

picture H(pen p=currentpen) {
  picture H;
  draw(H,(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b),p);
  return H;
}

transform sc=scale(0.5);
transform[] t={identity(),
               shift(-a,b)*sc, shift(-a,-b)*sc,
               shift(a,b)*sc,  shift(a,-b)*sc};

picture Hfractal(int n, pen p=currentpen)
{
  picture pic;
  if(n == 0) return H(p);
  picture Ht=Hfractal(n-1,p);
  for (int i=0; i < 5; ++i) add(pic,t[i]*Ht);
  return pic;
}

add(Hfractal(4, bp+0.5*red));

đź”—fractales-fig010

Figure fractales 010 Generated with Asymptote

Show fractales/fig0100.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Array

size(10cm,0);

real a=-1.5, b=2a/3;

path[] H=(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b);

transform sc=scale(0.5);
transform[] t={shift(-a,b)*sc, shift(-a,-b)*sc,
               shift(a,b)*sc,  shift(a,-b)*sc};

void Hfractal(path[] g, int n, pen[] p=new pen[]{currentpen})
{
  p.cyclic=true;
  if(n == 0) draw(H,p[0]); else {
    for (int i=0; i < 4; ++i) {
      draw(t[i]*g,p[n]);
      Hfractal(t[i]*g,n-1,p);
    }
  }
}

Hfractal(H, 5, new pen[] {0.8*red, 0.8*green, 0.8*blue, black, blue+red});

đź”—generalities-fig089

Figure generalities 089 Generated with Asymptote

Show generalities/fig0890.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 2D | Generalities
Tags : #Basis | #Deferred drawing | #Arrows/Bars | #Labelmargin | #Margin | #Picture

//From documentation of Asymptote
size(6cm, 0);

void distance(picture pic=currentpicture, pair A, pair B, Label L="", real n=0, pen p=currentpen)
{
  real d=3mm;
  guide g=A--B;
  transform T=shift(-n*d*unit(B-A)*I);
  pic.add(new void(frame f, transform t) {
    picture opic;
    guide G=T*t*g;
    draw(opic, G, p, Arrows(NoFill), Bars, PenMargins);
    label(opic, L, midpoint(G), UnFill(1));
    add(f, opic.fit());
  });
  pic.addBox(min(g), max(g), T*min(p), T*max(p));
}

pair A=(0, 0), B=(3, 3);

dot(A);
dot(B);
distance(A, B, Label("$\ell$", Rotate(dir(A--B))), 1);

đź”—generalities-fig101

Figure generalities 101 Generated with Asymptote

Show generalities/fig1010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 2D | Generalities
Tags : #Basis | #Circle | #Picture | #Transform/scale/shift/rotate | #Array

size(8cm,0);

picture pic;
pen [] P={.8red,.7green,blue+.5grey,yellow+.6grey};

fill(scale(10)*unitcircle,.2blue);

for (int i = 0; i <= 3; ++i)
  draw(pic, arc((0,0),10,i*90,(i+1)*90), P[i]);

for (real i = 1; i <= 10; i+=.05)
  add(rotate(90*i)*scale(1/i)*pic);

đź”—generalities-fig108

Figure generalities 108 Generated with Asymptote

Show generalities/fig1090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 2D | Generalities
Tags : #Basis | #Fill/Unfill | #Picture

size(6cm,0);

pair A=0, B=(1,0), C=(.7,1);

void fillangle(picture pic=currentpicture,
	       pair O=0, pair A, pair B,
	       real radius=10,
	       pen p=grey)
{
  picture tpic;
  int n=sgn(radius);
  real a1=degrees(shift(-O)*A,false);
  real a2=degrees(shift(-O)*B,false);
  fill(tpic,(0,0)--arc((0,0), -radius, max(a1,a2), min(a1,a2),true)--cycle, p=p);
  add(pic,tpic,O);
}

draw(A--B--C--cycle);

real r1=15, r2=20;
fillangle(A,B,C,r1,.8red);
fillangle(A,B,C,-r2);
fillangle(B,A,C,r1,.8red);
fillangle(B,A,C,-r2);
fillangle(C,B,A,r1,.8red);
fillangle(C,B,A,-r2);

đź”—generalities-fig196

Figure generalities 196 Generated with Asymptote

Show generalities/fig1980.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 2D | Generalities
Tags : #Label | #Object | #Picture

void enclose(picture pic=currentpicture, envelope e,
             Label[] L=new Label[],
             real xmargin=0, real ymargin=xmargin, pen p=currentpen,
             filltype filltype=NoFill, bool above=true)
{

  real H;
  real[] h;
  pic.add(new void (frame f, transform t) {
      frame[] d=new frame[];
      for (int i=0; i<L.length; ++i) {
        d[i]=newframe;
        Label LL=L[i].copy();
        add(d[i],t,LL);
        add(f,d[i]);
        h[i]=ypart(max(d[i])-min(d[i]));
        if(H < h[i]) H=h[i];
      }
      for (int i=0; i<L.length; ++i) {
        real emy=(H-h[i])/2;
        e(f,d[i],xmargin,ymargin+emy,p,filltype,above);
      }
    });
}

void box(picture pic=currentpicture, Label[] L=new Label[],
         real xmargin=0, real ymargin=xmargin, pen p=currentpen,
         filltype filltype=NoFill, bool above=true)
{
  enclose(pic,box,L,xmargin,ymargin,p,filltype,above);
}

box(new Label[] {
    Label("\begin{minipage}{3cm}Some text some text some text.\end{minipage}",(2.2cm,0)),
    Label("Hello.",0),
    Label("\begin{minipage}{3cm}Some text some text some
text some text some text some text some text.\end{minipage}",(5.4cm,0)),
    Label("Bye.\rule{0pt}{1.5cm}",(1cm,-3cm))
      });

đź”—graph-fig034

Figure graph 034 Generated with Asymptote

Show graph/fig0350.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 2D | Graph.asy
Tags : #Graph | #Function (drawing) | #Align | #Picture | #Transform/scale/shift/rotate/projection

// From Asymptote's FAQ
import graph; 
 
real width=15cm; 
real aspect=0.3; 
 
picture pic1,pic2; 
 
size(pic1,width,aspect*width,IgnoreAspect); 
size(pic2,width,aspect*width,IgnoreAspect); 
 
scale(pic1,false); 
scale(pic2,false); 
 
real xmin1=6; 
real xmax1=9; 
real xmin2=8; 
real xmax2=16; 
 
real a1=1; 
real a2=0.001; 
 
real f1(real x) {return a1*sin(x/2*pi);} 
real f2(real x) {return a2*sin(x/4*pi);} 
 
draw(pic1,graph(pic1,f1,xmin1,xmax1)); 
draw(pic2,graph(pic2,f2,xmin2,xmax2)); 
 
xaxis(pic1,Bottom,LeftTicks()); 
yaxis(pic1,"$f_1(x)$",Left,RightTicks); 
 
xaxis(pic2,Bottom,LeftTicks(Step=4)); 
yaxis(pic2,"$f_2(x)$",Left,RightTicks); 
 
yequals(pic1,0,Dotted); 
yequals(pic2,0,Dotted); 
 
pair min1=point(pic1,SW); 
pair max1=point(pic1,NE); 
 
pair min2=point(pic2,SW); 
pair max2=point(pic2,NE); 
 
real scale=(max1.x-min1.x)/(max2.x-min2.x); 
real shift=min1.x/scale-min2.x; 
 
transform t1 = pic1.calculateTransform(); 
transform t2 = pic2.calculateTransform(); 
transform T=xscale(scale*t1.xx)*yscale(t2.yy); 
 
add(pic1.fit()); 
real height=truepoint(N).y-truepoint(S).y; 
add(shift(0,-height)*(shift(shift)*pic2).fit(T)); 

đź”—tiling-fig001

Figure tiling 001 Generated with Asymptote

Show tiling/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Tiling
Tags : #Tiling | #Function (creating) | #Picture

size(10cm,0);

picture pavehexagonal(int depth=1)
{
  picture opic;
  path hexa=polygon(6);
  pair center;
  real a,ap,r,rp,r_d=180/pi;

  for(int j=0; j<depth; ++j)
    {
      for (int i=1; i<=6; ++i)
	{
	  a=i*60-30;
	  r=j*sqrt(3);
	  center=r*(rotate(a)*(1,0));
	  filldraw(opic, shift(center)*hexa, j/depth*.8red+(1-j/depth)*.8*blue);
	  //Uncomment to see centers of hexagons
	  dot(opic, shift(center)*midpoint(point(hexa,0)--point(hexa,3)));
	  //Uncomment to see circles passing by centers
	  //draw(opic, scale(r)*unitcircle, j/depth*red+(1-j/depth)*blue);
	  rp=r;
	  ap=0;
	  for (real k=0; k<j-1; ++k)
	    {
	      r=sqrt((1.5*(j-1 - k))^2 + 3/4*(j+1 + k)^2);
	      ap+=r_d*acos((rp^2 + r^2 - 3)/(2*r*rp));
	      center=r*(rotate(a + ap)*(1,0));
	      filldraw(opic, shift(center)*hexa, j/depth*.8*red+(1-j/depth)*.8*blue);
	      //Uncomment to see the centers of hexagons
	      //dot(opic, shift(center)*midpoint(point(hexa,0)--point(hexa,3)));
	      rp=r;
	      //Uncomment to see circles passing by centers
	      //draw(opic, scale(r)*unitcircle, j/depth*red+(1-j/depth)*blue);
            }
        }
    }
  return opic;
}


add(pavehexagonal(7));

đź”—tiling-fig003

Figure tiling 003 Generated with Asymptote

Show tiling/fig0030.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Tiling
Tags : #Path | #Picture | #Tiling

size(10cm,0);

transform r60=rotate(60);

pair A=(sqrt(3)/2,-.5);
pair B=r60*A, C=r60*B, D=r60*C, E=r60*D, F=r60*E;

path AB=A{dir(90)}..(.6,.5)..B{dir(0)};
path DE=shift(E-A)*reverse(AB);
path BC=B{dir(45)}..(.75,.7){dir(150)}..{dir(135)}(.65,.75){dir(70)}..(.5,1.25)..C{dir(255)};
path EF=shift(F-B)*reverse(BC);
path CD=C{dir(255)}..(-.4,.5){dir(200)}..D{dir(160)};
path FA=shift(A-C)*reverse(CD);

draw(A--B--C--D--E--F--cycle,linewidth(2pt));
draw(AB,2pt+.8red);
draw(DE,2pt+.8red);
draw(BC,2pt+.8blue);
draw(EF,2pt+.8blue);
draw(CD,2pt+.8green);
draw(FA,2pt+.8green);

picture hexa;
picture eye;

filldraw(hexa,AB--BC--CD--DE--EF--FA--cycle,black,white);
filldraw(eye,rotate(5)*xscale(.4)*unitcircle,white);
filldraw(hexa,subpath(AB,1,2)--subpath(BC,0,2){dir(225)}..{dir(245)}cycle,.1red+yellow,white);
draw(hexa,point(BC,0.1){dir(115)}.. (.8,.55) ..(.6,.65){dir(180)},yellow+grey);
filldraw(eye,rotate(5)*xscale(.4)*unitcircle,white);
fill(eye,rotate(5)*shift(0,-.1)*xscale(.25)*scale(.5)*unitcircle);
add(hexa,shift(.6,.9)*scale(.1)*eye);

add(shift(3,0)*hexa);

đź”—various-fig008

Figure various 008 Generated with Asymptote

Show various/fig0405.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Miscellaneous
Tags : #Transform | #Picture

// PDF version of this picture: /home/pi/code/pi/asymptote/asymptote-exemples-builder/build/asy/various/fig0405.pdf
import labelpath;

size(17cm,0);
usepackage("mathrsfs, amsfonts,amsmath,amssymb");
picture pic, pic1, pic2, pic3;
real u=1, Y=pi+0.2;
path cle=scale(u)*unitcircle;
path arcg=arc((0,0),1.5*u,115,155);

void addtick(picture pic=currentpicture, Label L, pair z, pair dir=E, pen p=currentpen)
{
  transform R=rotate(degrees(dir));
  real width=1.5mm;
  Label L=L.copy();
  L.position(z);
  L.align(NoAlign,E);
  L.align.dir=R*L.align.dir*1.3*width/mm;
  L.p(p);
  pic.add(new void(frame f, transform t) {
      path g=(-width,0)--(width,0);
      picture opic;
      draw(opic,shift(t*z)*R*g,p);
      add(f,opic.fit());
    });
  add(pic,L);
}

path roll(picture pic=currentpicture, real x, int nb=50)
{
  real stp=x/(nb-1);
  return operator --(...
                     sequence(new guide(int t){
                         real tt=t*stp;
                         return shift(expi(tt))*((x-tt)*(-sin(tt),cos(tt)));
                       },nb));
}

labelpath("\tiny Sens direct",reverse(arcg));
draw(arcg, Arrow());
draw(Label("$\mathscr{C}$",Relative(0.625)), cle,bp+grey);

dot("$O$", (0,0), S);
dot("$0$", point(cle,0));
dot("$I$", point(cle,0), 2*W);
dot("$J$", point(cle,1), 2*S);
dot("$K$", point(cle,2), 2*W);
dot("$L$", point(cle,3), 2*N);

draw("$1$",(0,0)--point(cle,2),Arrows);

pic.add(currentpicture);// Save the common picture.

// Starting picture 1
pair yM=(u,Y*u), ym=(u,-Y*u);
draw(ym--yM, linewidth(bp), Arrow(TeXHead));
arrow("\underline{Axe des r\'eels}",(u,-0.75*Y*u),W,1cm);

real x=2.2, y=-1.25;
addtick(Label("$1$", align=E),(u,1));
addtick(Label("$2$", align=E),(u,2));
addtick(Label("$-1$", align=E),(u,-1));
addtick(Label("$x$", align=E),(u,x));
addtick(Label("$y$", align=E),(u,y));

pic1.add(currentpicture);
erase();

// Starting picture 2
add(pic);
real t=x+0.1;

draw((u,0)--yM, bp+grey, Arrow(TeXHead));
path tg=arc((0,0),u,0,degrees(t));
draw(tg,linewidth(bp));
addtick(Label("$1$", align=E),u*(cos(1),sin(1)),dir(degrees(1.0)));
addtick(Label("$1$", align=E),(u,1), grey);

addtick(Label("$2$", align=E),(u,2),grey);
addtick(Label("$\frac{\pi}{2}$", align=E),(u,pi/2),grey);
addtick(Label("$\pi$", align=E),(u,pi),grey);
addtick(Label("$-1$", align=E),(u,-1));
addtick(Label("$x$", align=E),(u,x), grey);
addtick(Label("$x$", align=E),u*(cos(x),sin(x)),dir(degrees(x)));
addtick(Label("$y$", align=E),(u,-x));

dot("$M$", u*expi(x), -2*u*expi(x));

draw(Label("+",Relative(0.5)), roll(x), dotted, Arrow(Relative(0.5)));
draw(roll(1), dotted);
draw(Label("+",Relative(0.5)), roll(pi/2), dotted, Arrow(Relative(0.5)));
draw(Label("+",Relative(0.5)), roll(pi,100), dotted, Arrow(Relative(0.5)));

path g=u*expi(t)--shift(u*expi(t))*((Y-t)*u*expi(pi/2+t));
draw(g,linewidth(bp), Arrow(TeXHead));
addtick(Label("$\pi$", align=E),arcpoint(g,(pi-t)*u),expi(t));

pic3.add(currentpicture);
draw(ym--(u,0), linewidth(bp));
pic2.add(currentpicture);
erase();

// Starting picture 3

draw(ym--(u,0), linewidth(bp)+grey);
path tg=arc((0,0),u,0,degrees(-t));
draw(tg,linewidth(bp));
addtick(Label("$-1$", align=E),u*(cos(-1),sin(-1)),dir(degrees(-1.0)));
addtick(Label("$-1$", align=E),(u,-1), grey);

addtick(Label("$-2$", align=E),(u,-2),grey);
addtick(Label("$-\frac{\pi}{2}$", align=E),(u,-pi/2),grey);
addtick(Label("$-\pi$", align=E),(u,-pi),grey);

dot("$N$", u*expi(-x), -2*u*expi(-x));

g=roll(-x);
draw(Label("$-$",align=2*I*dir(g,0.5),Relative(0.5)), g, dotted, Arrow(NoFill,Relative(0.5)));
g=roll(-1);
draw(g, dotted);
g=roll(-pi/2);
draw(Label("$-$",align=2*I*dir(g,0.5),Relative(0.5)), g, dotted, Arrow(NoFill,Relative(0.5)));
g=roll(-pi,100);
draw(Label("$-$",align=2*I*dir(g,0.5),Relative(0.5)), g, dotted, Arrow(NoFill,Relative(0.5)));

g=u*expi(-t)--shift(u*expi(-t))*((Y-t)*u*expi(-pi/2-t));
draw(g, linewidth(bp), Arrow(TeXHead));
addtick(Label("$-\pi$", align=E),arcpoint(g,(pi-t)*u),expi(-t));


////////////////////////////////////////////////////////////
pic3.add(currentpicture);
erase();

add(pic1);
add(shift(4*u,0)*pic2);
add(shift(8*u,0)*pic3);
shipout(format="pdf");

đź”—various-fig009

Figure various 009 Generated with Asymptote

Show various/fig0410.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Miscellaneous
Tags : #Transform | #Picture

size(10cm);
path cle=unitcircle;

path roll(picture pic=currentpicture, real x, int nb=50)
{
  real stp=x/(nb-1);
  return operator --(...
                     sequence(new guide(int t){
                         real tt=t*stp;
                         return shift(expi(tt))*((x-tt)*(-sin(tt),cos(tt)));
                       },nb));
}

real y=4*pi;
pair yM=(1,y), ym=(1,-y);

int nb=100;
real stp=2*y/nb;

path[] g;
for (int i=1; i <= nb; ++i) {
  real t=-y+i*stp;
  g.push(roll(-y+i*stp/2,50+round(20*i*stp))--reverse(roll(y-i*stp/2,50+round(20*i*stp)))--cycle);
}

pen p1=blue, p2=0.9*red;
fill(g,p1);
fill(g,fillrule(1)+p2);
unfill(cle);
draw(cle,white);
shipout(rotate(-90)*bbox(Fill(lightyellow)));

0%