🔗Asymptote Gallery Tagged by “Recursion” #188
đź”—fractales-fig001

Show fractales/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Function (creating) | #Fractals | #Recursion | #Transform | #Picture
// From documentation of Asymptote size(250); real a=3; real b=4; real c=hypot(a,b); transform ta=shift(c,c)*rotate(-aCos(a/c))*scale(a/c)*shift(-c); transform tb=shift(0,c)*rotate(aCos(b/c))*scale(b/c); picture Pythagorean(int n) { picture pic; fill(pic,scale(c)*unitsquare,1/(n+1)*green+n/(n+1)*brown); if(n == 0) return pic; picture branch=Pythagorean(--n); add(pic,ta*branch); add(pic,tb*branch); return pic; } add(Pythagorean(12));
đź”—fractales-fig002

Show fractales/fig0020.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Function (creating)
size(10cm,0); transform scale(pair center, real k) { return shift(center)*scale(k)*shift(-center); } path trk=(0,0)--(0,1); void tree(path p, int n, real a=30, real b=40, real r=.75) { if (n!=0) { pair h=point(p,length(p)); transform tb=rotate(180-b,h)*scale(h,r); transform ta=rotate(-180+a,h)*scale(h,r); draw(p,n/3+1/(n+1)*green+n/(n+1)*brown); tree(tb*reverse(p),n-1,a,b,r); tree(ta*reverse(p),n-1,a,b,r); } } tree(trk,12,a=25,b=40,r=.75);
đź”—fractales-fig003

Show fractales/fig0030.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Function (creating)
// Barnsley's fern // Fougère de Barnsley size(5cm,0); real ab=85, ac=-5; real rc=.85, rb=-.31; path trk=(0,0)--(0,1); transform ta=shift(0,1)*rotate(ab)*scale(rb); transform tb=shift(0,1)*rotate(-ab)*scale(rb); transform tc=shift(0,1)*rotate(ac)*scale(rc); picture fern(int n) { picture opic; draw(opic,trk^^ta*trk^^tb*trk^^tc*trk); if (n==0) return opic; picture branch=fern(n-1); add(opic,branch); add(opic,ta*branch); add(opic,tb*branch); add(opic,tc*branch); return opic; } add(fern(6));
đź”—fractales-fig006

Show fractales/fig0060.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Random | #Function (creating)
//From documentation of Asymptote size(10cm); // Draw Sierpinski triangle with top vertex A, side s, and depth q. void Sierpinski(pair A, real s, int q, bool top=true, bool randcolor=false) { pair B=A-(1,sqrt(2))*s/2; pair C=B+s; if(top) draw(A--B--C--cycle); if (randcolor) { filldraw((A+B)/2--(B+C)/2--(A+C)/2--cycle, (.33*rand()/randMax*red+.33*rand()/randMax*green+.33*rand()/randMax*blue)); } else draw((A+B)/2--(B+C)/2--(A+C)/2--cycle); if(q > 0) { Sierpinski(A,s/2,q-1,false,randcolor); Sierpinski((A+B)/2,s/2,q-1,false,randcolor); Sierpinski((A+C)/2,s/2,q-1,false,randcolor); } } Sierpinski((0,1), 1, 5, randcolor=true);
đź”—fractales-fig007

Translate from http://zoonek.free.fr/LaTeX/Metapost/metapost.html
Show fractales/fig0070.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion
size(8cm); void koch(pair A, pair B, int n) { pair C; C =rotate(120, point(A--B,1/3))*A; if (n>0) { koch( A, point(A--B,1/3), n-1); koch( point(A--B,1/3), C, n-1); koch( C, point(A--B,2/3), n-1); koch( point(A--B,2/3), B, n-1); } else draw(A--point(A--B,1/3)--C--point(A--B,2/3)--B); } pair z0=(1,0); pair z1=rotate(120)*z0; pair z2=rotate(120)*z1; koch( z0, z1, 3 ); koch( z1, z2, 3 ); koch( z2, z0, 3 );
đź”—fractales-fig009

Show fractales/fig0090.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Array
size(10cm,0); real a=-1.5, b=2a/3; picture H(pen p=currentpen) { picture H; draw(H,(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b),p); return H; } transform sc=scale(0.5); transform[] t={identity(), shift(-a,b)*sc, shift(-a,-b)*sc, shift(a,b)*sc, shift(a,-b)*sc}; picture Hfractal(int n, pen p=currentpen) { picture pic; if(n == 0) return H(p); picture Ht=Hfractal(n-1,p); for (int i=0; i < 5; ++i) add(pic,t[i]*Ht); return pic; } add(Hfractal(4, bp+0.5*red));
đź”—fractales-fig010

Show fractales/fig0100.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Transform | #Picture | #Array
size(10cm,0); real a=-1.5, b=2a/3; path[] H=(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b); transform sc=scale(0.5); transform[] t={shift(-a,b)*sc, shift(-a,-b)*sc, shift(a,b)*sc, shift(a,-b)*sc}; void Hfractal(path[] g, int n, pen[] p=new pen[]{currentpen}) { p.cyclic=true; if(n == 0) draw(H,p[0]); else { for (int i=0; i < 4; ++i) { draw(t[i]*g,p[n]); Hfractal(t[i]*g,n-1,p); } } } Hfractal(H, 5, new pen[] {0.8*red, 0.8*green, 0.8*blue, black, blue+red});
đź”—fractales-fig011

Show fractales/fig0110.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Geometry | #Triangle | #Array | #Loop/for/while
import geometry; size(10cm,0); triangle[] dissect(triangle T, int n) { if(n <= 0) return new triangle[]{T}; triangle[] OT; point M=midpoint(T.BC); triangle[] Tp=dissect(triangle(M,T.A,T.B),n-1); for(triangle t : Tp) OT.insert(0,t); triangle[] Tp=dissect(triangle(M,T.C,T.A),n-1); for(triangle t : Tp) OT.insert(0,t); return OT; } triangle T=rotate(45)*triangle((1,1),(0,0),(2,0)); triangle[] DT=dissect(T,9); path g; transform R=reflect(T.BC); for(int i : DT.keys) { draw(DT[i],miterjoin+0.9*red); draw(R*DT[i],miterjoin+0.9*red); g=g--centroid(DT[i]); } draw(scale(sqrt(2))*unitsquare,bp+miterjoin+0.8*blue); draw(g--reverse(R*g)--cycle,bp+miterjoin+yellow); shipout(bbox(sqrt(2)*mm, Fill(black)));
đź”—fractales-fig012

Show fractales/fig0120.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Geometry | #Triangle | #Array | #Loop/for/while
size(12cm,0); import geometry; triangle T=triangleAbc(90,Tan(30),1); triangle[] reverse(triangle[] arr) { triangle[] or; int l=arr.length; for(int i=0; i < l; ++i) { or.push(arr[l-i-1]); } return or; } triangle[] dissect(triangle T, int n, bool reverse=false) { if(n <= 0) return new triangle[]{T}; triangle[] OT; point M=curpoint(T.AB,T.b()*Tan(30)); point H=projection(T.BC)*M; triangle[] OT1, OT2, OT3; OT.append(dissect(triangle(H,T.B,M),n-1,!reverse)); OT.append(reverse((dissect(triangle(H,T.C,M),n-1,!reverse)))); OT.append(dissect(triangle(T.A,T.C,M),n-1,!reverse)); return OT; } triangle[] DT=dissect(T,5); point O=centroid(DT[0]); path g; transform Ro=rotate(30,T.B), Re=reflect(T.BC), Roj; for(int i : DT.keys) { O=incenter(DT[i]); g=g--O; } g=reverse(g); path G, g=g--Re*reverse(g) ; for (int j=0; j < 12; j += 2) G=G--Ro^(-j)*g; fill(G--cycle,0.3*blue); for(int i : DT.keys) { for (int j=0; j < 12; j += 2) { Roj=Ro^j; draw(Roj*DT[i],miterjoin+0.8*red); draw(Roj*(Re*DT[i]),miterjoin+0.8*red); } } draw(G--cycle,bp+miterjoin+0.9*yellow); shipout(bbox(2mm, FillDraw(black, 1mm+miterjoin+deepblue)));