🔗Asymptote Gallery Tagged by “Arrow (3D)” #157
đź”—three-fig004

Show three/fig0040.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Three.asy
Tags : #Arrow (3D) | #Triple | #Arc (3D) | #Direction (3D) | #Plan
import three; size(8cm, 0); real radius=1, theta=37, phi=60; currentprojection=perspective(4, 1, 2); // Planes pen bg=gray(0.9)+opacity(0.5); draw(surface((1.2, 0, 0)--(1.2, 0, 1.2)--(0, 0, 1.2)--(0, 0, 0)--cycle), bg, bg); draw(surface((0, 1.2, 0)--(0, 1.2, 1.2)--(0, 0, 1.2)--(0, 0, 0)--cycle), bg, bg); draw(surface((1.2, 0, 0)--(1.2, 1.2, 0)--(0, 1.2, 0)--(0, 0, 0)--cycle), bg, bg); real r=1.5; draw(Label("$x$", 1), O--r*X, Arrow3(HookHead3)); draw(Label("$y$", 1), O--r*Y, Arrow3(HookHead3)); draw(Label("$z$", 1), O--r*Z, Arrow3(HookHead3)); label("$\rm O$", (0, 0, 0), W); triple pQ=radius*dir(theta, phi); // Point Q // triple pQ=radius*expi(radians(theta), radians(phi)); // Point Q draw(O--radius*dir(90, phi)^^O--pQ, dashed); dot("$R*\mathrm{dir}\left(\theta, \phi\right)$", pQ); // Arcs draw("$\theta$", reverse(arc(O, 0.5*pQ, 0.5*Z)), N+0.3E, Arrow3(HookHead2)); draw("$\phi$", arc(O, 0.5*X, 0.5*(pQ.x, pQ.y, 0)), N+0.3E, Arrow3(HookHead2)); path3 p3=O--arc(O, radius, 0, phi, 90, phi)--cycle; draw(surface(p3), blue+opacity(0.5));