Figure Asymptote graph3 -- 001
🔗This picture comes from the Asymptote gallery of topic graph3

A Möbius strip of half-width with midcircle of radius
and at height can be represented parametrically by :
for in and in . In this parametrization, the Möbius strip is therefore a cubic surface with equation
2y+x2y+y3-2Rxz-2x2z-2y2z+yz2=0
Show graph3/fig0010.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Examples 3D | Graph3.asy
Tags : #Graph (3D) | #Surface | #Level set (3D)
import graph3; ngraph=200; size(12cm,0); currentprojection=orthographic(-4,-4,5); real x(real t), y(real t), z(real t); real R=2; void xyzset(real s){ x=new real(real t){return (R+s*cos(t/2))*cos(t);}; y=new real(real t){return (R+s*cos(t/2))*sin(t);}; z=new real(real t){return s*sin(t/2);}; } int n=ngraph; real w=1; real s=-w, st=2w/n; path3 p; triple[][] ts; for (int i=0; i <= n; ++i) { xyzset(s); p=graph(x,y,z,0,2pi); ts.push(new triple[] {}); for (int j=0; j <= ngraph; ++j) { ts[i].push(point(p,j)); } s += st; } pen[] pens={black, yellow, red, yellow, black}; draw(surface(ts, new bool[][]{}), lightgrey); for (int i=0; i <= 4; ++i) { xyzset(-w+i*w/2); draw(graph(x,y,z,0,2pi), 2bp+pens[i]); }