Figure Asymptote fractales -- 012
🔗This picture comes from the Asymptote gallery of topic fractales

Show fractales/fig0120.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Fractals
Tags : #Fractals | #Recursion | #Geometry | #Triangle | #Array | #Loop/for/while
size(12cm,0); import geometry; triangle T=triangleAbc(90,Tan(30),1); triangle[] reverse(triangle[] arr) { triangle[] or; int l=arr.length; for(int i=0; i < l; ++i) { or.push(arr[l-i-1]); } return or; } triangle[] dissect(triangle T, int n, bool reverse=false) { if(n <= 0) return new triangle[]{T}; triangle[] OT; point M=curpoint(T.AB,T.b()*Tan(30)); point H=projection(T.BC)*M; triangle[] OT1, OT2, OT3; OT.append(dissect(triangle(H,T.B,M),n-1,!reverse)); OT.append(reverse((dissect(triangle(H,T.C,M),n-1,!reverse)))); OT.append(dissect(triangle(T.A,T.C,M),n-1,!reverse)); return OT; } triangle[] DT=dissect(T,5); point O=centroid(DT[0]); path g; transform Ro=rotate(30,T.B), Re=reflect(T.BC), Roj; for(int i : DT.keys) { O=incenter(DT[i]); g=g--O; } g=reverse(g); path G, g=g--Re*reverse(g) ; for (int j=0; j < 12; j += 2) G=G--Ro^(-j)*g; fill(G--cycle,0.3*blue); for(int i : DT.keys) { for (int j=0; j < 12; j += 2) { Roj=Ro^j; draw(Roj*DT[i],miterjoin+0.8*red); draw(Roj*(Re*DT[i]),miterjoin+0.8*red); } } draw(G--cycle,bp+miterjoin+0.9*yellow); shipout(bbox(2mm, FillDraw(black, 1mm+miterjoin+deepblue)));