Figure Asymptote tiling -- 005
🔗This picture comes from the Asymptote gallery of topic tiling

Show tiling/fig0050.asy on Github.
Generated with Asymptote 3.00-0.
Categories : Surveys | Tiling
Tags : #Tiling
size(10cm,0); transform r60=rotate(60); picture hexa; pair A=(1,0); pair B=r60*A, C=r60*B, D=r60*C, E=r60*D, F=r60*E; real ad=30; real tensio=.15; path AB=A {dir(120-ad)} .. shift(tensio*dir(30))*midpoint(A--B) .. B {dir(120+ad)}; path BC=reverse(rotate(240,B)*AB); path CD=reverse(rotate(240,C)*BC); path DE=reverse(rotate(240,D)*CD); path EF=reverse(rotate(240,E)*DE); path FA=reverse(rotate(240,F)*EF); real lux=-.3, sq=sqrt(3)/2; radialshade(hexa,AB--BC--CD--DE--EF--FA--cycle, lightgrey,(lux*sq,lux/2),0, grey,(lux*sq,lux/2),1+abs(lux)); //Circular paving with the unit hexagonal picture "hexa" picture pavehexagonal(picture hexa, int depth=1) { picture opic; pair center; real a,ap,r,rp,r_d=180/pi; add(opic, hexa); for(int j=0; j<depth; ++j) { for (int i=1; i<=6; ++i) { a=i*60-30; r=j*sqrt(3); center=r*(rotate(a)*(1,0)); add(opic, shift(center)*hexa); rp=r; ap=0; for (real k=0; k<j-1; ++k) { r=sqrt((1.5*(j-1 - k))^2 + 3/4*(j+1 + k)^2); ap+=r_d*acos((rp^2 + r^2 - 3)/(2*r*rp)); center=r*(rotate(a + ap)*(1,0)); add(opic, shift(center)*hexa); rp=r; } } } return opic; } add(pavehexagonal(hexa,4));